Cho hình thang ABCD (AB // CD), M là trung điểm của AD, N là trung điểm của BC. Gọi I, K theo thứ tự là giao điểm của MN với BD, AC. Cho biết AB = 6cm, CD = 14cm. Viết GT-KL và tính độ dài MI, IK.
Giải chi tiết:

- Hình thang ABCD có:
\(\left. \matrix{{\rm{AM}} = {\rm{MD(gt)}}\cr {\rm{BN}} = {\rm{NC (gt)}} \cr} \right\} \Rightarrow \) MN là đường trung bình
MN//AB//CD (tính chất).
- Tam giác ACD có: \(\left. \matrix{{\rm{AM }} = {\rm{ MD}} \cr MI//AB \cr} \right\} \Rightarrow \) ID = IB (định lý đảo về đường trung bình của tam giác).
MI là đường trung bình của ∆ADC
\( \Rightarrow MI = {1 \over 2}AB = {1 \over 2}.6 = 3(cm)\)
- Tương tự tam giác ACD có: AM = MD, MK//DC nên AK = KC, MK là đường trung bình, ta có:
\(MK = {1 \over 2}CD = {1 \over 2}.14 = 7(cm)\)
IK = MK - MI = 7 - 3 = 4(cm)
Cho tam giác ABC vuông cân tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:
Kết quả của phép tính \(\left( {3x + 1} \right)\left( {9{x^2} - 3x + 1} \right)\) bằng:
Hãy chọn câu đúng. Hình bình hành ABCD là hình chữ nhật khi:
Rút gọn biểu thức \(A = {{\left( {9{x^2} + 12x + 4} \right).\left( {3x - 2} \right)} \over {\left( {3x + 2} \right)}}\)
Cho tứ giác ABCD, lấy N, M, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác NMPQ là hình gì?
Tính giá trị của biểu thức \(B = \left( {x + 5} \right)\left( {x - 5} \right) - {x^2} + 7\left( {x - 5} \right)\) tại x = 1:
Tìm x biết:
\(a)\;{x^2} - 3x - 10 = 0\) \(b)\;7x\left( {3x - 2} \right) - 4 + 6x = 0\)
Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:
Biểu thức \(C = {13^{n + 2}} - {13^n}.23\) (với n là số tự nhiên bất kì) luôn chia hết cho số tự nhiên nào dưới đây?
Rút gọn:
\(P = {{\left( {x + 1} \right)\left( {4{x^2} - 4x + 1} \right) + \left( {x - 1} \right)\left( {4{x^2} - 4x + 1} \right)} \over {\left( {x + 3} \right)\left( {x - 1} \right) - {x^2} - 1}}\) (với \(\left( {2x - 1} \right) \ne 0\) )