Cho góc xAy khác góc bẹt. Trên tia Ax lấy các điểm B, C. Qua B, C vẽ 2 đường thẳng song song cắt Ay lần lượt ở D và E. Qua E vẽ đường thẳng song song với CD cắt tia Ax ở F.
a) So sánh \(\frac{{AB}}{{AC}}\) và \(\frac{{AD}}{{AE}}\); \(\frac{{AC}}{{AF}}\) và \(\frac{{AD}}{{AE}}\)
b) CMR: \(A{C^2} = AB.AF\)
Giải chi tiết:

a) Vì BD// CE, áp dụng định lý Talet ta có:
\(\frac{{AB}}{{AC}} = \frac{{AD}}{{AE}}\) (1)
Vì CD// EF, áp dụng định lý Talet ta có:
\(\frac{{AC}}{{AF}} = \frac{{AD}}{{AE}}\) (2)
b) Từ (1) và (2) ta có:
\(\frac{{AB}}{{AC}} = \frac{{AC}}{{AF}} \Rightarrow AC.AC = AB.AF\)
\(A{C^2} = AB.AF\) (điều phải chứng minh)
Tính giá trị của biểu thức \(B = \left( {x + 5} \right)\left( {x - 5} \right) - {x^2} + 7\left( {x - 5} \right)\) tại x = 1:
Rút gọn biểu thức \(A = {{\left( {9{x^2} + 12x + 4} \right).\left( {3x - 2} \right)} \over {\left( {3x + 2} \right)}}\)
Kết quả của phép tính \(\left( {3x + 1} \right)\left( {9{x^2} - 3x + 1} \right)\) bằng:
Biểu thức \(C = {13^{n + 2}} - {13^n}.23\) (với n là số tự nhiên bất kì) luôn chia hết cho số tự nhiên nào dưới đây?
Cho tam giác ABC vuông cân tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:
Cho tứ giác ABCD, lấy N, M, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác NMPQ là hình gì?
Hãy chọn câu đúng. Hình bình hành ABCD là hình chữ nhật khi:
Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:
Rút gọn:
\(P = {{\left( {x + 1} \right)\left( {4{x^2} - 4x + 1} \right) + \left( {x - 1} \right)\left( {4{x^2} - 4x + 1} \right)} \over {\left( {x + 3} \right)\left( {x - 1} \right) - {x^2} - 1}}\) (với \(\left( {2x - 1} \right) \ne 0\) )
Tìm x biết:
\(a)\;{x^2} - 3x - 10 = 0\) \(b)\;7x\left( {3x - 2} \right) - 4 + 6x = 0\)