[LỜI GIẢI] Cho ∆ ABC vuông tại A , có D  là trung điểm của BC . Gọi E,F  lần lượt - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho ∆ ABC vuông tại A , có D  là trung điểm của BC . Gọi E,F  lần lượt

Cho ∆ ABC vuông tại A , có D  là trung điểm của BC . Gọi E,F  lần lượt

Câu hỏi

Nhận biết

Cho \(\Delta ABC\) vuông tại \(A\) , có \(D\) là trung điểm của \(BC\) . Gọi \(E,\,F\) lần lượt là hình chiếu của \(D\) trên \(AB\) và \(AC\) .

1. Chứng minh: \(A{\rm{D}} = EF\)

2. Gọi K là điểm đối xứng với \(D\) qua \(E\) . Chứng minh ba đường thẳng \(A{\rm{D}},\,EF,\,KC\) đồng quy.


Đáp án đúng:

Lời giải của Tự Học 365

Giải chi tiết:

1. Xét tứ giác \(A{\rm{ED}}F\) có: \(\angle BAC = \angle A{\rm{ED}} = \angle AFD = {90^0}\left( {gt} \right) \Rightarrow A{\rm{ED}}F\) là hình chữ nhật (dhnb)

\( \Rightarrow A{\rm{D}} = EF\) (tính chất hình chữ nhật)

2. Gọi \(O\) là giao điểm của \(EF\) và \(A{\rm{D}} \Rightarrow {\rm{O}}\)là trung điểm của \(EF\) và \(A{\rm{D}}\)(tính chất hình chữ nhật) (1)

\( \Rightarrow OE = OF\) (tính chất trung điểm)

Do D và K đối xứng nhau qua E nên suy ra \(\left\{ \begin{array}{l}DK \bot AB\\ED = KE\end{array} \right.\) (tính chất đối xứng)

Mà \(AC \bot AB\left( {gt} \right) \Rightarrow DK//AC\) (từ vuông góc đến song song)

Ta có: \(ED\) là đường trung bình của \(\Delta ABC\) (E, D

trung điểm của AB, BC (gt))

\( \Rightarrow ED = \frac{1}{2}BC \Rightarrow BC = 2ED.\)

Xét tứ giác \(AKDC\) ta có:

\(\begin{array}{l}BC//KD\;\;\left( {cmt} \right)\\KD = BC\;\;\left( { = 2KD} \right)\end{array}\)

\( \Rightarrow AKDC\) là hình bình hành (dhnb)

\( \Rightarrow KC,\;EF\) cắt nhau tại trung điểm của mỗi đường (tính chất)

O là trung điểm của EF  (cách gọi)

\( \Rightarrow KC,\;\;EF,\;\;AD\) đồng quy tại \(O.\) (đpcm)

Ý kiến của bạn