a. Tìm các số \(x,\,y\) thỏa mãn đẳng thức: \(3{x^2} + 3{y^2} + 4xy + 2x - 2y + 2 = 0\)
b. Với \(a,\,b,\,c,\,d\) dương, chứng minh: \(F = \frac{a}{{b + c}} + \frac{b}{{c + d}} + \frac{c}{{d + a}} + \frac{d}{{a + b}} \ge 2\)
Giải chi tiết:
\(\begin{array}{l}a)\,\,3{x^2} + 3{y^2} + 4xy + 2x - 2y + 2 = 0\\ \Leftrightarrow \left( {{x^2} + 2x + 1} \right) + \left( {{y^2} - 2y + 1} \right) + 2\left( {{x^2} + 2xy + {y^2}} \right) = 0\\ \Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + 2{\left( {x + y} \right)^2} = 0\end{array}\)
Ta có: \(\left\{ \begin{array}{l}{\left( {x + 1} \right)^2} \ge 0\,\forall \,x\\{\left( {y - 1} \right)^2} \ge 0\,\forall \,y\\{\left( {x + y} \right)^2} \ge 0\,\forall \,x,\,y\end{array} \right. \Rightarrow {\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {x + y} \right)^2} \ge 0\,\forall \,x,\,y\)
Do đó đẳng thức xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}x + 1 = 0\\y - 1 = 0\\x + y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = 1\\x = - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = 1\end{array} \right.\)
Vậy \(\left( {x;\;y} \right) = \left( {1;\;1} \right).\)
b) Ta có:
\(\begin{array}{l}F = \frac{a}{{b + c}} + \frac{b}{{c + d}} + \frac{c}{{d + a}} + \frac{d}{{a + b}}\\\;\;\; = \left( {\frac{a}{{b + c}} + \frac{c}{{d + a}}} \right) + \left( {\frac{b}{{c + d}} + \frac{d}{{a + b}}} \right)\\\;\;\; = \frac{{a\left( {d + a} \right) + c\left( {b + c} \right)}}{{\left( {b + c} \right)\left( {d + a} \right)}} + \frac{{b\left( {a + b} \right) + d\left( {c + d} \right)}}{{\left( {c + d} \right)\left( {a + b} \right)}}\\\;\;\; = \frac{{{a^2} + {c^2} + ad + bc}}{{\left( {b + c} \right)\left( {d + a} \right)}} + \frac{{{b^2} + {d^2} + ab + cd}}{{\left( {c + d} \right)\left( {a + b} \right)}}.\end{array}\)
Áp dụng bất đẳng thức Cô-si cho hai số \(x\) và \(y\) dương ta có: \({\left( {x + y} \right)^2} \ge 4xy.\)
Áp dụng bất đẳng thức trên cho hai số \(\left( {b + c} \right)\) và \(\left( {d + a} \right)\) ta có:
\(\begin{array}{l}\;\;\;\;{\left[ {\left( {b + c} \right) + \left( {a + d} \right)} \right]^2} \ge 4\left( {b + c} \right)\left( {a + d} \right)\\ \Leftrightarrow \left( {b + a} \right)\left( {a + d} \right) \le \frac{{{{\left( {a + b + c + d} \right)}^2}}}{4}.\end{array}\)
Tương tự ta có: \(\left( {c + d} \right)\left( {a + b} \right) \le \frac{{{{\left( {a + b + c + d} \right)}^2}}}{4}.\)
\(\begin{array}{l} \Rightarrow F \ge \frac{{{a^2} + {c^2} + ad + bc}}{{\frac{1}{4}\left( {b + c + d + a} \right)}} + \frac{{{b^2} + {d^2} + ab + cd}}{{\frac{1}{4}{{\left( {c + d + a + b} \right)}^2}}}\\\;\;\;\;\;\;\;\; = \frac{{4\left( {{a^2} + {b^2} + {c^2} + {d^2} + ab + bc + cd + ad} \right)}}{{{{\left( {a + b + c + d} \right)}^2}}}\\\;\;\;\;\;\;\;\; = \frac{{2\left( {{a^2} + {b^2} + {c^2} + {d^2} + 2ab + 2bc + 2cd + 2da + 2bd + 2ac} \right) + 2\left( {{a^2} + {b^2} + {c^2} + {d^2} - 2bd - 2ca} \right)}}{{{{\left( {a + b + c + d} \right)}^2}}}\\\;\;\;\;\;\;\;\; = \frac{{2{{\left( {a + b + c + d} \right)}^2} + 2\left[ {{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2}} \right]}}{{{{\left( {a + b + c + d} \right)}^2}}}\\\;\;\;\;\;\;\;\; = 2 + \frac{{2\left[ {{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2}} \right]}}{{{{\left( {a + b + c + d} \right)}^2}}}.\end{array}\)
Ta có: \({\left( {a - c} \right)^2} + {\left( {b - d} \right)^2} \ge 0\)
\( \Rightarrow F \ge 2.\)
Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}a - c = 0\\b - d = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = c\\b = d\end{array} \right..\)
Vậy \(F \ge 2\;\;\left( {dpcm} \right).\)
Chọn B.
Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:
Rút gọn biểu thức \(A = {{\left( {9{x^2} + 12x + 4} \right).\left( {3x - 2} \right)} \over {\left( {3x + 2} \right)}}\)
Cho tứ giác ABCD, lấy N, M, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác NMPQ là hình gì?
Biểu thức \(C = {13^{n + 2}} - {13^n}.23\) (với n là số tự nhiên bất kì) luôn chia hết cho số tự nhiên nào dưới đây?
Tính giá trị của biểu thức \(B = \left( {x + 5} \right)\left( {x - 5} \right) - {x^2} + 7\left( {x - 5} \right)\) tại x = 1:
Hãy chọn câu đúng. Hình bình hành ABCD là hình chữ nhật khi:
Kết quả của phép tính \(\left( {3x + 1} \right)\left( {9{x^2} - 3x + 1} \right)\) bằng:
Cho tam giác ABC vuông cân tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:
Tìm x biết:
\(a)\;{x^2} - 3x - 10 = 0\) \(b)\;7x\left( {3x - 2} \right) - 4 + 6x = 0\)
Rút gọn:
\(P = {{\left( {x + 1} \right)\left( {4{x^2} - 4x + 1} \right) + \left( {x - 1} \right)\left( {4{x^2} - 4x + 1} \right)} \over {\left( {x + 3} \right)\left( {x - 1} \right) - {x^2} - 1}}\) (với \(\left( {2x - 1} \right) \ne 0\) )