Một hình chữ nhật có chu vi 372m nếu tăng chiều dài 21m và tăng chiều rộng 10m thì diện tích tăng 2862m2. Chiều dài của hình chữ nhật là:
Giải chi tiết:
Nửa chu vi của hình chữ nhật là: \(372:2 = 186\,\,\left( m \right).\)
Gọi chiều dài hình chữ nhật là \(x\,\,\left( m \right),\,\,\,\,\left( {0 < x < 186} \right).\)
Chiều rộng hình chữ nhật là: \(186 - x\,\,\,\left( m \right).\)
Diện tích hình chữ nhật là: \(x\left( {186 - x} \right) = 186x - {x^2}\,\,\,\,\left( {{m^2}} \right).\)
Tăng chiều dài lên 21m thì chiều dài mới là: x + 21 (m)
Tăng chiều rộng lên 10m thì chiều rộng mới là: \(186 - x + 10 = 196 - x\,\,\,\left( m \right).\)
Diện tích hình chữ nhật mới là: \(\left( {x + 21} \right)\left( {196 - x} \right) = 175x - {x^2} + 4116\,\,\,\left( {{m^2}} \right).\)
Theo đề bài ta có phương trình: \(186x - {x^2} + 2862 = 175x - {x^2} + 4116\)
\(\begin{array}{l} \Leftrightarrow 11x = 1254\\ \Leftrightarrow x = 114\,\,\,\left( {tm} \right).\end{array}\)
Vậy chiều dài hình chữ nhật là 114m.
Chọn D.
Hãy chọn câu đúng. Hình bình hành ABCD là hình chữ nhật khi:
Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:
Kết quả của phép tính \(\left( {3x + 1} \right)\left( {9{x^2} - 3x + 1} \right)\) bằng:
Rút gọn:
\(P = {{\left( {x + 1} \right)\left( {4{x^2} - 4x + 1} \right) + \left( {x - 1} \right)\left( {4{x^2} - 4x + 1} \right)} \over {\left( {x + 3} \right)\left( {x - 1} \right) - {x^2} - 1}}\) (với \(\left( {2x - 1} \right) \ne 0\) )
Tìm x biết:
\(a)\;{x^2} - 3x - 10 = 0\) \(b)\;7x\left( {3x - 2} \right) - 4 + 6x = 0\)
Tính giá trị của biểu thức \(B = \left( {x + 5} \right)\left( {x - 5} \right) - {x^2} + 7\left( {x - 5} \right)\) tại x = 1:
Cho tứ giác ABCD, lấy N, M, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác NMPQ là hình gì?
Biểu thức \(C = {13^{n + 2}} - {13^n}.23\) (với n là số tự nhiên bất kì) luôn chia hết cho số tự nhiên nào dưới đây?
Cho tam giác ABC vuông cân tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:
Rút gọn biểu thức \(A = {{\left( {9{x^2} + 12x + 4} \right).\left( {3x - 2} \right)} \over {\left( {3x + 2} \right)}}\)