1. Phân tích đa thức thành nhân tử:
a. \(3{x^2} - 6x + 2xy - 4y \)
b. \({a^2} \left( {{a^2} + 4} \right) - {a^2} + 4 \)
2. Tìm \(x \) biết: \({x^2} - x + 0,25 = 0. \)
3. Chứng minh giá trị biểu thức \({ \left( {m - 1} \right)^3} - \left( {{m^2} + 1} \right) \left( {m - 3} \right) - 2m \) là số nguyên tố với mọi giá trị của \(m \) .
Giải chi tiết:
1. Ta có:
\(\begin{array}{l}a)\;\;3{x^2} - 6x + 2xy - 4y = 3x\left( {x - 2} \right) + 2y\left( {x - 2} \right) = \left( {x - 2} \right)\left( {3x + 2y} \right).\\b)\;\;{a^2}\left( {{a^2} + 4} \right) - {a^2} + 4 = {a^4} + 4{a^2} - {a^2} + 4\\ = \left( {{a^4} + 4{a^2} + 4} \right) - {a^2} = {\left( {{a^2} + 2} \right)^2} - {a^2}\\ = \left( {{a^2} + 2 - a} \right)\left( {{a^2} + 2 + a} \right).\end{array}\)
\(\begin{array}{l}2.\;{x^2} - x + 0,25 = 0 \Leftrightarrow {x^2} - x + \frac{1}{4} = 0\\ \Leftrightarrow 4{x^2} - 4x + 1 = 0 \Leftrightarrow {\left( {2x - 1} \right)^2} = 0\\ \Leftrightarrow 2x - 1 = 0 \Leftrightarrow x = \frac{1}{2}.\end{array}\)
Vậy \(x = \frac{1}{2}.\)
Chọn A.
Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:
Rút gọn biểu thức \(A = {{\left( {9{x^2} + 12x + 4} \right).\left( {3x - 2} \right)} \over {\left( {3x + 2} \right)}}\)
Kết quả của phép tính \(\left( {3x + 1} \right)\left( {9{x^2} - 3x + 1} \right)\) bằng:
Tính giá trị của biểu thức \(B = \left( {x + 5} \right)\left( {x - 5} \right) - {x^2} + 7\left( {x - 5} \right)\) tại x = 1:
Tìm x biết:
\(a)\;{x^2} - 3x - 10 = 0\) \(b)\;7x\left( {3x - 2} \right) - 4 + 6x = 0\)
Hãy chọn câu đúng. Hình bình hành ABCD là hình chữ nhật khi:
Rút gọn:
\(P = {{\left( {x + 1} \right)\left( {4{x^2} - 4x + 1} \right) + \left( {x - 1} \right)\left( {4{x^2} - 4x + 1} \right)} \over {\left( {x + 3} \right)\left( {x - 1} \right) - {x^2} - 1}}\) (với \(\left( {2x - 1} \right) \ne 0\) )
Biểu thức \(C = {13^{n + 2}} - {13^n}.23\) (với n là số tự nhiên bất kì) luôn chia hết cho số tự nhiên nào dưới đây?
Cho tam giác ABC vuông cân tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:
Cho tứ giác ABCD, lấy N, M, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác NMPQ là hình gì?