Câu 37226 - Tự Học 365
Câu hỏi Vận dụng

Cho tứ diện \(ABCD\). Gọi \(E\), \(F\) lần lượt là trung điểm của các cạnh \(AC\) và \(BC\). Trên mặt phẳng \(\left( {BCD} \right)\) lấy một điểm \(M\) tùy ý (điểm \(M\) có đánh dấu tròn như hình vẽ). Nêu đầy đủ các trường hợp (TH) để thiết diện tạo bởi mặt phẳng \(\left( {MEF} \right)\) với tứ diện \(ABCD\) là một tứ giác.


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Xác định thiết diện của tứ diện được cắt bởi mặt phẳng \(\left( {MEF} \right)\) ở mỗi trường hợp và kết luận.

Xem lời giải

Lời giải của Tự Học 365

Hình ở TH1: Trong \(\left( {BCD} \right)\): Kẻ \(FM\) cắt \(CD\) tại \(H\). Thiết diện là tam giác \(EFH\).

Hình ở TH2:

Trong \(\left( {BCD} \right)\): Kẻ \(FM\) cắt \(BD\) tại \(I\), cắt \(CD\) tại \(H\).

Trong \(\left( {ACD} \right)\): Kẻ \(HE\) cắt \(AD\) tại \(K\).

Thiết diện là tứ giác \(EFIK\).

Hình ở TH3:

Trong \(\left( {BCD} \right)\): Kẻ \(FM\) cắt \(BD\) tại \(I\), cắt \(CD\) tại \(H\).

Trong \(\left( {ACD} \right)\): Kẻ \(HE\) cắt \(AD\) tại \(K\).

Thiết diện là tứ giác \(EFIK\).

Đáp án cần chọn là: c

Toán Lớp 12