Cho khối chóp \(S.ABCD\) có thể tích bằng \(16\). Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm của \(SA\), \(SB\), \(SC\), \(SD\). Tính thể tích khối chóp \(S.MNPQ\).
Phương pháp giải
So sánh thể tích khối chóp \(S.MNPQ\) với thể tích khối chóp \(S.ABCD\) và suy ra kết quả.
Lời giải của Tự Học 365
Ta có: \(\dfrac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SN}}{{SB}}.\dfrac{{SP}}{{SC}} = \dfrac{1}{8}\), \(\dfrac{{{V_{S.MQP}}}}{{{V_{S.ADC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SQ}}{{SD}}.\dfrac{{SP}}{{SC}} = \dfrac{1}{8}\).
Ta có: $\dfrac{1}{8} = \dfrac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \dfrac{{{V_{S.MQP}}}}{{{V_{S.ADC}}}} = \dfrac{{{V_{S.MNP}} + {V_{S.MQP}}}}{{{V_{S.ABC}} + {V_{S.ADC}}}} = \dfrac{{{V_{S.MNPQ}}}}{{{V_{S.ABCD}}}}$.
\( \Rightarrow {V_{S.MNPQ}} = 2\).
Đáp án cần chọn là: b
Toán Lớp 12