Câu 37214 - Tự Học 365
Câu hỏi Vận dụng

Cho hình lăng trụ \(ABC.A'B'C'\) có thể tích bằng \(V\). Các điểm \(M\), \(N\), \(P\) lần lượt thuộc các cạnh $AA'$, $BB'$, $CC'$ sao cho $\dfrac{{AM}}{{AA'}} = \dfrac{1}{2}$, $\dfrac{{BN}}{{BB'}} = \dfrac{{CP}}{{CC'}} = \dfrac{2}{3}$. Thể tích khối đa diện \(ABC.MNP\) bằng


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Tính tỉ số thể tích các khối chóp \(M.NPCB\) và \(M.ABC\) so với thể tích khối lăng trụ \(ABC.A'B'C'\) và suy ra kết luận.

Xem lời giải

Lời giải của Tự Học 365

Có ${V_{A'.B'C'CB}} = \dfrac{2}{3}V = {V_{M.B'C'CB}}$

Đặt: ${V_1} = {V_{M.NPCB}} = \dfrac{1}{3}d\left( {M,\left( {CC'B'B} \right)} \right).{S_{NPCB}}$

$ = \dfrac{1}{3}d\left( {M,\left( {CC'B'B} \right)} \right).\dfrac{2}{3}{S_{CC'B'B}}$ $ = \dfrac{2}{3}.\dfrac{1}{3}d\left( {M,\left( {CC'B'B} \right)} \right).{S_{CC'B'B}} $ $= \dfrac{2}{3}{V_{M.CC'B'B}} = \dfrac{2}{3}.\dfrac{2}{3}.V = \dfrac{4}{9}V$

$\begin{array}{l}{V_2} = {V_{M.ABC}} = \dfrac{1}{3}d\left( {M,\left( {ABC} \right)} \right).{S_{ABC}}\\ = \dfrac{1}{3}.\dfrac{1}{2}d\left( {A',\left( {ABC} \right)} \right).{S_{ABC}} = \dfrac{1}{6}V\end{array}$

Vậy \({V_{ABC.MNP}} = {V_1} + {V_2} = \dfrac{4}{9}V + \dfrac{1}{6}V = \dfrac{{11}}{{18}}V\)

Đáp án cần chọn là: d

Toán Lớp 12