Số nghiệm nguyên của bất phương trình $\left| {\dfrac{{2 - 3\left| x \right|}}{{1 + x}}} \right| \le 1$ là:
Phương pháp giải
Lập bảng xét dấu, phá trị tuyệt đối, đưa về giải bất phương trình chứa trị tuyệt đối cơ bản
Lời giải của Tự Học 365
Điều kiện: $x + 1 e 0 \Leftrightarrow x e - \,1.$
TH1. Với $x \ge 0,$ ta có $\left| {\dfrac{{2 - 3\left| x \right|}}{{1 + x}}} \right| \le 1 \Leftrightarrow \left| {\dfrac{{2 - 3x}}{{x + 1}}} \right| \le 1 \Leftrightarrow - \,1 \le \dfrac{{2 - 3x}}{{x + 1}} \le 1 \Leftrightarrow \dfrac{1}{4} \le x \le \dfrac{3}{2}.$
Kết hợp với điều kiện $x \ge 0,$ ta được tập nghiệm ${S_1} = \left[ {\dfrac{1}{4};\dfrac{3}{2}} \right].$
TH2. Với $x < 0,$ ta có $\left| {\dfrac{{2 - 3\left| x \right|}}{{1 + x}}} \right| \le 1 \Leftrightarrow \left| {\dfrac{{2 + 3x}}{{x + 1}}} \right| \le 1 \Leftrightarrow - \,1 \le \dfrac{{2 + 3x}}{{x + 1}} \le 1 \Leftrightarrow - \dfrac{3}{4} \le x \le - \dfrac{1}{2}.$
Kết hợp với điều kiện $x < 0,$ ta được tập nghiệm ${S_2} = \left[ { - \dfrac{3}{4}; - \dfrac{1}{2}} \right].$
Do đó, tập nghiệm của bất phương trình là $S = {S_1} \cup {S_2} = \left[ {\dfrac{1}{4};\dfrac{3}{2}} \right] \cup \left[ { - \dfrac{3}{4}; - \dfrac{1}{2}} \right].$
Vậy số nghiệm nguyên $x$ cần tìm là $1\,\,\,\left( {x = 1} \right).$
Đáp án cần chọn là: a
Toán Lớp 12