Câu 37222 - Tự Học 365
Câu hỏi Vận dụng

Số nghiệm nguyên thỏa mãn bất phương trình $\left| {x + 2} \right| + \left| { - 2x + 1} \right| \le x + 1$ là:


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Lập bảng xét dấu, phá trị tuyệt đối, đưa về bất phương trình cơ bản

Xem lời giải

Lời giải của Tự Học 365

Xét bất phương trình $\left| {x + 2} \right| + \left| { - \,2x + 1} \right| \le x + 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left(  *  \right).$

Bảng xét dấu

TH1. Với $x <  - \,2,$ khi đó $\left(  *  \right) \Leftrightarrow \left( { - \,x - 2} \right) + \left( { - \,2x + 1} \right) \le x + 1 \Leftrightarrow  - \,2 \le 4x \Leftrightarrow x \ge  - \dfrac{1}{2}.$

Kết hợp với điều kiện $x <  - \,2,$ ta được tập nghiệm ${S_1} = \emptyset .$

TH2. Với $ - \,2 \le x <  - \dfrac{1}{2},$ khi đó $\left(  *  \right) \Leftrightarrow x + 2 - 2x + 1 \le x + 1 \Leftrightarrow 2x \ge 2 \Leftrightarrow x \ge 1.$

Kết hợp với điều kiện $ - \,2 \le x < \dfrac{1}{2},$ ta được tập nghiệm ${S_2} = \emptyset .$

TH3. Với $x \ge \dfrac{1}{2},$ khi đó $\left(  *  \right) \Leftrightarrow x + 2 - \left( { - 2x + 1} \right) \le x + 1 \Leftrightarrow 2x \le 0 \Leftrightarrow x \le 0.$

Kết hợp với điều kiện $x \ge \dfrac{1}{2},$ ta được tập nghiệm ${S_3} = \emptyset .$

Vậy tập nghiệm của bất phương trình là $S = {S_1} \cup {S_2} \cup {S_3} = \emptyset .$

Đáp án cần chọn là: d

Toán Lớp 12