Câu 37216 - Tự Học 365
Câu hỏi Thông hiểu

Hỏi có bao nhiêu giá trị nguyên $x$ thỏa mãn bất phương trình $\left| {\dfrac{{2 - x}}{{x + 1}}} \right| \ge 2$ ?


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Xét hai trường hợp để phá trị tuyệt đối

Xem lời giải

Lời giải của Tự Học 365

Điều kiện: $x + 1 e 0 \Leftrightarrow x e  - \,1.$

Bất phương trình $\left| {\dfrac{{2 - x}}{{x + 1}}} \right| \ge 2 \Leftrightarrow \left[ \begin{array}{l}\dfrac{{2 - x}}{{x + 1}} \ge 2\\\dfrac{{2 - x}}{{x + 1}} \le  - \,2\end{array} \right. $ $\Leftrightarrow \left[ \begin{array}{l}\dfrac{{2 - x}}{{x + 1}} - 2 \ge 0\\\dfrac{{2 - x}}{{x + 1}} + 2 \le 0\end{array} \right. $ $\Leftrightarrow \left[ \begin{array}{l} - \dfrac{{3x}}{{x + 1}} \ge 0\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\\dfrac{{4 + x}}{{x + 1}} \le 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.$

Giải $\left( 1 \right),$ ta có bất phương trình $\left( 1 \right) \Leftrightarrow \dfrac{x}{{x + 1}} \le 0 \Leftrightarrow  - \,1 < x \le 0.$

Giải $\left( 2 \right),$ ta có bất phương trình $\left( 2 \right) \Leftrightarrow  - \,4 \le x <  - \,1.$

Do đó, tập nghiệm của bất phương trình là $S = \left[ { - \,4; - \,1} \right) \cup \left( { - \,1;0} \right].$

Vậy có tất cả $4$ giá trị nguyên $x$ cần tìm là $x = \left\{ { - \,4; - \,3; - \,2;0} \right\}.$

Đáp án cần chọn là: c

Toán Lớp 12