Câu 37212 - Tự Học 365
Câu hỏi Nhận biết

Trong mặt phẳng tọa độ $Oxy$, tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $z\left( {1 + i} \right)$ là số thực là:


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Phương pháp tìm tập hợp điểm biểu diễn số phức

Bước 1: Gọi số phức \(z = x + yi\) có điểm biểu diễn là \(M(x;y)\)

Bước 2: Thay \(z\) vào đề bài \( \Rightarrow \) Sinh ra một phương trình:

+) Đường thẳng: \(Ax + By + C = 0.\)

+) Đường tròn: \({x^2} + {y^2} - 2ax - 2by + c = 0.\)

+) Parabol: \(y = a.{x^2} + bx + c\)

+) Elip: \(\dfrac{{{x^2}}}{a} + \dfrac{{{y^2}}}{b} = 1\)

Xem lời giải

Lời giải của Tự Học 365

Giả sử ta có số phức $z = x + yi$. Ta có \(z(1 + i) = (x + yi)(1 + i) = (x - y) + (x + y)i\)

\(z(1 + i)\) là số thực khi $x + y = 0$.

Đáp án cần chọn là: c

Toán Lớp 12