Phương trình \(\sqrt {10x + 1} + \sqrt {3x - 5} = \sqrt {9x + 4} + \sqrt {2x - 2} {\rm{ }}\left( * \right)\) có nghiệm ${x_0}$ thỏa mãn
Phương pháp giải
Sử dụng phương pháp nhân liên hợp để tìm được nhân tử chung. Sau đó đưa về giải phương trình tích và đánh giá các phương trình để tìm nghiệm.
Lời giải của Tự Học 365
Điều kiện: \(x \ge \dfrac{5}{3}\).
\(\begin{array}{l}\left( * \right) \Leftrightarrow \left( {\sqrt {10x + 1} - \sqrt {9x + 4} } \right) + \left( {\sqrt {3x - 5} - \sqrt {2x - 2} } \right) = 0\\ \Leftrightarrow \dfrac{{10x + 1 - \left( {9x + 4} \right)}}{{\sqrt {10x + 1} + \sqrt {9x + 4} }} + \dfrac{{3x - 5 - \left( {2x - 2} \right)}}{{\sqrt {3x - 5} + \sqrt {2x - 2} }} = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {\dfrac{1}{{\sqrt {10x + 1} + \sqrt {9x + 4} }} + \dfrac{1}{{\sqrt {3x - 5} + \sqrt {2x - 2} }}} \right) = 0\end{array}\)
Vì \(\forall x \ge \dfrac{5}{3} \Rightarrow \dfrac{1}{{\sqrt {10x + 1} + \sqrt {9x + 4} }} + \dfrac{1}{{\sqrt {3x - 5} + \sqrt {2x - 2} }} > 0\) nên \(\left( 1 \right) \Leftrightarrow x = 3\).
Kết hợp điều kiện phương trình có nghiệm duy nhất \(x = 3\).
Đáp án cần chọn là: c
Toán Lớp 12