Cho hàm số \(y = m{x^3} - 2({m^2} + 1){x^2} + 2{m^2} - m\). Tìm các điểm cố định mà đồ thị hàm số đã cho luôn đi qua với mọi \(m\).
Phương pháp giải
Biến đổi phương trình hàm số đã cho về ẩn \(m,\) tham số \(x,y\) rồi cho các hệ số đó bằng \(0\) để tìm \(x;y\).
Điểm có tọa độ \(\left( {x;y} \right)\) tìm được ở trên chính là điểm cần tìm.
Lời giải của Tự Học 365
Để \(N\left( {x;y} \right)\) là điểm cố định mà đồ thị hàm số đã cho luôn đi qua, điều kiện cần và đủ là \(y = m{x^3} - 2({m^2} + 1){x^2} + 2{m^2} - m,\,\,\forall m\)
\(\begin{array}{l} \Leftrightarrow 2{m^2}\left( {1 - {x^2}} \right) + m\left( {{x^3} - 1} \right) - 2{x^2} - y = 0,\,\,\,\forall m\\ \Leftrightarrow \left\{ \begin{array}{l}1 - {x^2} = 0\\{x^3} - 1\\2{x^2} + y = 0\end{array} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = - 2}\end{array}} \right.\end{array}\)
Vậy đồ thị hàm số đã cho luôn đi qua điểm \(N\left( {1; - 2} \right)\).
Đáp án cần chọn là: c
Toán Lớp 12