Trong một môn học, Thầy giáo có $30$ câu hỏi khác nhau gồm $5$ câu khó, $10$ câu trung bình và $15$ câu dễ. Từ $30$ câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm $5$ câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ cả $3$ câu (khó, dễ, trung bình) và số câu dễ không ít hơn $2$ ?
Phương pháp giải
- Liệt kê các trường hợp có số câu hỏi từng loại thỏa mãn yêu cầu đề bài.
- Tính số đề thi có được từ mỗi trường hợp đó rồi dùng quy tắc cộng tính số đề kiểm tra.
Lời giải của Tự Học 365
Ta có các trường hợp sau
TH 1: Đề thi gồm $2 D, 2 TB, 1 K:$ \(C_{15}^2.C_{10}^2.C_5^1\)
TH 2: Đề thi gồm $2 D, 1 TB, 2 K:$ \(C_{15}^2.C_{10}^1.C_5^2\)
TH 3: Đề thi gồm $3 D, 1 TB, 1 K:$ \(C_{15}^3.C_{10}^1.C_5^1\)
Vậy có: \(C_{15}^2.C_{10}^2.C_5^1+C_{15}^2.C_{10}^1.C_5^2+C_{15}^3.C_{10}^1.C_5^1=56875\) đề kiểm tra.
Đáp án cần chọn là: c
Toán Lớp 12