Câu 37218 - Tự Học 365
Câu hỏi Vận dụng

Có bao nhiêu số chẵn gồm $4$ chữ số đôi một khác nhau được lập từ các số $0,1,2,4,5,6,8$


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Đếm số cách chọn từng chữ số trong số có \(4\) chữ số thỏa bài toán và sử dụng quy tắc nhân để tính số các số.

Xem lời giải

Lời giải của Tự Học 365

Gọi \(x = \overline {abcd} ;{\rm{ }}a,b,c,d \in \left\{ {0,1,2,4,5,6,8} \right\}\).

Vì \(x\) là số chẵn nên \(d \in \left\{ {0,2,4,6,8} \right\}\).

TH 1: \(d = 0 \Rightarrow \) có $1$ cách chọn \(d\).

Với mỗi cách chọn \(d\) ta có $6$ cách chọn \(a \in \left\{ {1,2,4,5,6,8} \right\}\)

Với mỗi cách chọn \(a,d\) ta có $5$ cách chọn \(b \in \left\{ {1,2,4,5,6,8} \right\}\backslash \left\{ a \right\}\)

Với mỗi cách chọn \(a,b,d\) ta có \(4\) cách chọn \(c \in \left\{ {1,2,4,5,6,8} \right\}\backslash \left\{ {a,b} \right\}\)

Suy ra trong trường hợp này có \(1.6.5.4 = 120\) số.

TH 2: \(d e 0 \Rightarrow d \in \left\{ {2,4,6,8} \right\} \Rightarrow \) có $4$ cách chọn $d$

Với mỗi cách chọn \(d\), do \(a e 0\) nên ta có $5$ cách chọn

\(a \in \left\{ {1,2,4,5,6,8} \right\}\backslash \left\{ d \right\}\).

Với mỗi cách chọn \(a,d\) ta có $5$ cách chọn \(b \in \left\{ {0,1,2,4,5,6,8} \right\}\backslash \left\{ a,d \right\}\)

Với mỗi cách chọn \(a,b,d\) ta có \(4\) cách chọn \(c \in \left\{ {0,1,2,4,5,6,8} \right\}\backslash \left\{ {a,b,d} \right\}\)

Suy ra trong trường hợp này có $4.5.5.4 = 400$ số.

Vậy có tất cả \(120 + 400 = 520\) số cần lập.

Đáp án cần chọn là: b

Toán Lớp 12