Câu 37207 - Tự Học 365
Câu hỏi Vận dụng

Tập nghiệm của bất phương trình ${\left( {\sqrt 5  - 2} \right)^{\dfrac{{2x}}{{x - 1}}}} \le {\left( {\sqrt 5  + 2} \right)^x}$ là:


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Biến đổi hai vế bất phương trình về cùng cơ số và sử dụng chú ý:

Nếu $a>1$ thì $a^x\ge a^y$ nếu $x\ge y$

Xem lời giải

Lời giải của Tự Học 365

${\left( {\sqrt 5  - 2} \right)^{\dfrac{{2x}}{{x - 1}}}} \le {\left( {\sqrt 5  + 2} \right)^x}$$ \Leftrightarrow {\left( {\sqrt 5  + 2} \right)^{\dfrac{{ - 2x}}{{x - 1}}}} \le {\left( {\sqrt 5  + 2} \right)^x}$$ \Leftrightarrow  - \dfrac{{2x}}{{x - 1}} \le x$

$ \Leftrightarrow \dfrac{{2x}}{{x - 1}} + x \ge 0$$ \Leftrightarrow \dfrac{{{x^2} + x}}{{x - 1}} \ge 0 \Leftrightarrow  - 1 \le x \le 0 \vee x > 1$ .

Đáp án cần chọn là: d

Toán Lớp 12