Câu 37203 - Tự Học 365
Câu hỏi Thông hiểu

Số giao điểm của đường cong \(y = {x^3} - 3{x^2} + x - 1\) và đường thẳng \(y = 1 - 2x\) bằng:


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

- Xét phương trình hoành độ giao điểm, giải phương trình và kết luận nghiệm.

- Số giao điểm chính là số nghiệm của phương trình.

Xem lời giải

Lời giải của Tự Học 365

Xét phương trình hoành độ:

\({x^3} - 3{x^2} + x - 1 = 1 - 2x\) \( \Leftrightarrow {x^3} - 3{x^2} + 3x - 2 = 0\) \( \Leftrightarrow \left( {x - 2} \right)\left( {{x^2} - x + 1} \right) = 0\) \( \Leftrightarrow x = 2\)

Vậy số giao điểm là \(1\).

Đáp án cần chọn là: a

Toán Lớp 12