Câu 37230 - Tự Học 365
Câu hỏi Thông hiểu

Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi đường \(\left( E \right):\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1\) quay quanh \(Oy\,\,?\)


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Rút hàm số đã cho theo biến y : \(x = f\left( y \right)\), Vẽ hình và xác định các đường giới hạn.

Áp dụng công thức tính thể tích khối tròn khi xoay quanh trục Oy của hình phẳng bị giới hạn bởi đồ thị các hàm số \(x = f\left( y \right),x = g\left( y \right),y = a,y = b\) là \(V = \int\limits_a^b {\left| {{f^2}\left( y \right) - {g^2}\left( y \right)} \right|dy} \).

Xem lời giải

Lời giải của Tự Học 365

\(\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1 \Leftrightarrow {x^2} = 16\left( {1 - \dfrac{{{y^2}}}{9}} \right) \Leftrightarrow x =  \pm \dfrac{4}{3}\sqrt {9 - {y^2}} \)

Phương trình tung độ giao điểm của đồ thị \(\left( E \right)\) với $Oy$ là \(\dfrac{0}{{16}} + \dfrac{{{y^2}}}{9} = 1 \Leftrightarrow \left[ \begin{array}{l}y =  - \,3\\y = 3\end{array} \right..\)

Ta xét thể tích vật tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị hàm số \(x = \dfrac{4}{3}\sqrt {9 - {y^2}} \), đường thẳng $x = 0, y = 3, y = 0$ quanh trục $Ox$ là: \(V = \left| {\dfrac{{16}}{9}\pi \int\limits_0^3 {\left( {9 - {y^2}} \right)dy} } \right| = \left| {\dfrac{{16}}{9}\left. {\pi \left( {9y - \dfrac{{{y^3}}}{3}} \right)} \right|_0^3} \right| = 32\pi \).

Khi đó thể tích cần tìm là \(2V = 64\pi \).

Đáp án cần chọn là: d

Toán Lớp 12