Tính diện tích hình phẳng giới hạn bởi các đồ thị \(y={{x}^{2}}-2x\) và \(y=-\,{{x}^{2}}+x.\)
Phương pháp giải
Tìm hoành độ giao điểm, áp dụng công thức tính diện tích giới hạn bởi hai đồ thị hàm số
Lời giải của Tự Học 365
Hoành độ giao điểm của \(\left( {{P}_{1}} \right),\,\,\left( {{P}_{2}} \right)\) là nghiệm của phương trình: \({{x}^{2}}-2x=-\,{{x}^{2}}+x\Leftrightarrow \left[ \begin{align} x=0 \\ x=\frac{3}{2} \\ \end{align} \right..\)
Vậy diện tích cần tính là \(S=\int\limits_{0}^{\frac{3}{2}}{\left| {{x}^{2}}-2x-\left( -\,{{x}^{2}}+x \right) \right|\,\text{d}x}=\int\limits_{0}^{\frac{3}{2}}{\left| 2{{x}^{2}}-3x \right|\,\text{d}x}=\int\limits_{0}^{\frac{3}{2}}{\left( 3x-2{{x}^{2}} \right)\,\text{d}x}=\frac{9}{8}.\)
Đáp án cần chọn là: c
Toán Lớp 12