Cho hàm số \(y=f(x)={{x}^{3}}-3{{x}^{2}}-4x\,\,(C)\). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số (C) và trục hoành. Phát biểu nào sau đây đúng?
Phương pháp giải
Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số \(y=f(x),\,\,y=g(x)\), trục hoành và hai đường thẳng \(x=a;\,\,x=b\) được tính theo công thức : \(S=\int\limits_{a}^{b}{\left| f(x)-g(x) \right|dx}\)
Lời giải của Tự Học 365
Diện tích hình phẳng giới hạn bởi đồ thị hàm số (C) và trục hoành là:
\(S=\int\limits_{-1}^{4}{\left| {{x}^{3}}-3{{x}^{2}}-4x \right|dx}=\int\limits_{-1}^{0}{\left| {{x}^{3}}-3{{x}^{2}}-4x \right|dx+}\int\limits_{0}^{4}{\left| {{x}^{3}}-3{{x}^{2}}-4x \right|dx}=\int\limits_{-1}^{0}{\left( {{x}^{3}}-3{{x}^{2}}-4x \right)dx-}\int\limits_{0}^{4}{\left( {{x}^{3}}-3{{x}^{2}}-4x \right)dx}\)
Đáp án cần chọn là: c
Toán Lớp 12