Câu 37217 - Tự Học 365
Câu hỏi Vận dụng cao

Trong không gian với hệ tọa độ $Oxyz,$ cho các điểm $A\left( {0;0; - \,2} \right),\,\,B\left( {4;0;0} \right).$ Mặt cầu $\left( S \right)$ có bán kính nhỏ nhất, đi qua $O,\,\,A,\,\,B$ có tâm là


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Nhận biết được tam giác vuông thông qua tích vô hướng và xác định tâm mặt cầu

Xem lời giải

Lời giải của Tự Học 365

Ta có $\overrightarrow {OA}  = \left( {0;0; - \,2} \right),\,\,\overrightarrow {OB}  = \left( {4;0;0} \right)$ suy ra $\overrightarrow {OA} .\overrightarrow {OB}  = 0\,\, \Rightarrow \,\,\Delta \,OAB$ vuông tại $O.$

Do đó, mặt cầu $\left( S \right)$ có bán kính ${R_{\min }}$ và đi qua $O,\,\,A,\,\,B$ có tâm là trung điểm của $AB.$

Vậy tọa độ tâm mặt cầu là $I\left( {2;0; - \,1} \right).$

Đáp án cần chọn là: a

Toán Lớp 12