Trong không gian \(Oxyz,\) cho mặt phẳng \((\alpha ):x - z - 3 = 0\) và điểm \(M(1;\,\,1;\,\,1).\) Gọi \(A\) là điểm thuộc tia \(Oz,\) \(B\) là hình chiếu của \(A\) lên \((\alpha ).\) Biết rằng tam giác \(MAB\) cân tại \(M.\) Diện tích của tam giác \(MAB\) bằng
Phương pháp giải
+) Gọi $A\left( {0;0;a} \right),\,\,\left( {a > 0} \right)$ viết phương trình đường thẳng AB đi qua A và vuông góc với \(\left( \alpha \right)\).
+) $B = AB \cap \left( \alpha \right)$, tìm tọa độ điểm B theo a.
+) Tam giác MAB cân tại M \( \Rightarrow MA = MB\), tìm a.
+) Sử dụng công thức tính diện tích ${S_{\Delta \,MAB}} = \dfrac{1}{2}\left| {\left[ {\overrightarrow {MA} ;\overrightarrow {MB} } \right]} \right|$.
Lời giải của Tự Học 365
Gọi $A\left( {0;0;a} \right)\,\,\left( {a > 0} \right),$ vì $AB \bot \,\,mp\,\,\left( \alpha \right)$$ \Rightarrow $ Phương trình đường thẳng $\left( {AB} \right):\left\{ \begin{array}{l}x = t\\y = 0\\z = a - t\end{array} \right..$
Mà $B = AB \cap \left( \alpha \right)$$ \Rightarrow \,\,B\left( {t;0;a - t} \right)$ và $B \in \,\,mp\,\,\left( \alpha \right)$$ \Rightarrow $$t - \left( {a - t} \right) - 3 = 0 \Leftrightarrow t = \dfrac{{a + 3}}{2}.$
Khi đó $B\left( {\dfrac{{a + 3}}{2};0;\dfrac{{a - 3}}{2}} \right) \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AM} = \left( {1;1;1 - a} \right)\\\overrightarrow {BM} = \left( { - \dfrac{{a + 1}}{2};1;\dfrac{{5 - a}}{2}} \right)\end{array} \right.$
$\begin{array}{l}AM = BM \Leftrightarrow A{M^2} = B{M^2} \Leftrightarrow 2 + {\left( {1 - a} \right)^2} = 1 + \dfrac{{{{\left( {a + 1} \right)}^2} + {{\left( {5 - a} \right)}^2}}}{4}\\ \Leftrightarrow {a^2} - 2a + 2 = \dfrac{{2{a^2} - 8a + 26}}{4}\\ \Leftrightarrow 2{a^2} = 18 \Leftrightarrow {a^2} = 9 \Leftrightarrow a = 3\,\,\left( {a > 0} \right)\\ \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AM} = \left( {1;1; - 2} \right)\\\overrightarrow {BM} = \left( { - 2;1;1} \right)\end{array} \right. \Rightarrow \left[ {\overrightarrow {MA} ;\overrightarrow {MB} } \right] = \left( {3;3;3} \right)\end{array}$
Vậy diện tích tam giác $MAB$ là ${S_{\Delta \,MAB}} = \dfrac{1}{2}\left| {\left[ {\overrightarrow {MA} ;\overrightarrow {MB} } \right]} \right| = \dfrac{{3\sqrt 3 }}{2}.$
Đáp án cần chọn là: c
Toán Lớp 12