Tính giá trị của $G = {\cos ^2}\dfrac{\pi }{6} + {\cos ^2}\dfrac{{2\pi }}{6} + ... + {\cos ^2}\dfrac{{5\pi }}{6} + {\cos ^2}\pi $
Phương pháp giải
Nhóm các số hạng thích hợp rồi sử dụng các phép biến đổi lượng giác cơ bản đưa về giá trị lượng giác các góc có mối liên quan đặc biệt.
Lời giải của Tự Học 365
$G = {\cos ^2}\dfrac{\pi }{6} + {\cos ^2}\dfrac{{2\pi }}{6} + ... + {\cos ^2}\dfrac{{5\pi }}{6} + {\cos ^2}\pi $$ = \left( {{{\cos }^2}\dfrac{\pi }{6} + {{\cos }^2}\dfrac{{2\pi }}{6}} \right) + \left( {{{\cos }^2}\dfrac{{4\pi }}{6} + {{\cos }^2}\dfrac{{5\pi }}{6}} \right) + \left( {{{\cos }^2}\dfrac{\pi }{2} + {{\cos }^2}\pi } \right)$.
$ = \left( {{{\cos }^2}\dfrac{\pi }{6} + {{\cos }^2}\dfrac{\pi }{3}} \right) + \left( {{{\cos }^2}\dfrac{{2\pi }}{6} + {{\cos }^2}\dfrac{\pi }{6}} \right) + 1$.
$ = 2\left( {{{\cos }^2}\dfrac{\pi }{6} + {{\cos }^2}\dfrac{\pi }{3}} \right) + 1 = 2\left( {{{\cos }^2}\dfrac{\pi }{6} + {{\sin }^2}\dfrac{\pi }{6}} \right) + 1 = 3$.
Đáp án cần chọn là: a
Toán Lớp 12