Câu 37205 - Tự Học 365
Câu hỏi Vận dụng cao

Tính giá trị của biểu thức $P = \left( {1 - 2\cos 2\alpha } \right)\left( {2 + 3\cos 2\alpha } \right)$ biết $\sin \alpha  = \dfrac{2}{3}$.


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Sử dụng công thức nhân đôi \(\cos 2\alpha  = 1 - 2{\sin ^2}\alpha \)

Xem lời giải

Lời giải của Tự Học 365

Ta có $P = \left( {1 - 2\cos 2\alpha } \right)\left( {2 + 3\cos 2\alpha } \right)$$ = \left[ {1 - 2\left( {1 - 2{{\sin }^2}\alpha } \right)} \right]\left[ {2 + 3\left( {1 - 2{{\sin }^2}\alpha } \right)} \right]$.

$ = \left[ {1 - 2\left( {1 - 2.\dfrac{4}{9}} \right)} \right]\left[ {2 + 3\left( {1 - 2.\dfrac{4}{9}} \right)} \right]$\( = \dfrac{{49}}{{27}}\).

Đáp án cần chọn là: a

Toán Lớp 12