Câu 37208 - Tự Học 365
Câu hỏi Vận dụng cao

Phương trình tiếp tuyến với đồ thị \(\left( C \right):\,y = 2{x^3} - 6{x^2} + 3\) có hệ số góc nhỏ nhất là


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

- Tính đạo hàm và tìm giá trị nhỏ nhất của đạo hàm.

- Từ đó viết phương trình tiếp tuyến.

Xem lời giải

Lời giải của Tự Học 365

TXĐ: $D = \mathbb{R}$.

\(y' = 6{x^2} - 12x\).

Hệ số góc của tiếp tuyến tại \({x_0}\) là \(k = y'\left( {{x_0}} \right)\).

\( \Leftrightarrow k = 6x_0^2 - 12{x_0}\)\( = 6\left( {x_0^2 - 2{x_0}} \right)\)\( = 6{\left( {{x_0} - 1} \right)^2} - 6 \ge  - 6\).

Hệ số góc nhỏ nhất bằng \( - 6\) khi \({x_0} = 1\)\( \Rightarrow {y_0} =  - 1\).

Phương trình tiếp tuyến là \(y =  - 6\left( {x - 1} \right) - 1\)\( \Leftrightarrow 6x + y - 5 = 0\).

Đáp án cần chọn là: a

Toán Lớp 12