Câu 37211 - Tự Học 365
Câu hỏi Vận dụng cao

Cho số phức thỏa mãn \(\left| z-2i \right|\le \left| z-4i \right|\) và \(\left| z-3-3i \right|=1.\) Giá trị lớn nhất của \(P=\left| z-2 \right|\) là


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Gọi \(z = a + bi,\,\left( {a,b \in } \right).\) là số phức cần tìm. Sử dụng giả thiết để đưa ra một hệ điều kiện đẳng thức, bất đẳng thức cho Sử dụng điều kiện trên để đánh giá và tìm giá trị lớn nhất của P

Xem lời giải

Lời giải của Tự Học 365

Giả sử số phức thỏa mãn yêu cầu bài toán có dạng \(z = a + bi,\,\left( {a,b \in } \right).\)  Khi đó ta có

\(\left\{ \begin{array}{l}\left| {z - 2i} \right| = \left| {\left( {a + bi} \right) - 2i} \right| = \sqrt {{a^2} + {{\left( {b - 2} \right)}^2}} \\\left| {z - 4i} \right| = \left| {\left( {a + bi} \right) - 4i} \right| = \sqrt {{a^2} + {{\left( {b - 4} \right)}^2}} \\\left| {z - 3 - 3i} \right| = \left| {\left( {a + bi} \right) - 3 - 3i} \right| = \sqrt {{{\left( {a - 3} \right)}^2} + {{\left( {b - 3} \right)}^2}} \\\left| {z - 2} \right| = \left| {\left( {a + bi} \right) - 2} \right| = \sqrt {{{\left( {a - 2} \right)}^2} + {b^2}} \end{array} \right.\)

Từ giả thiết ta suy ra

\(\left\{ \begin{array}{l}\sqrt {{a^2} + {{\left( {b - 2} \right)}^2}} \le \sqrt {{a^2} + {{\left( {b - 4} \right)}^2}} \\{\left( {a - 3} \right)^2} + {\left( {b - 3} \right)^2} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {b - 2} \right)^2} \le {\left( {b - 4} \right)^2}\\{\left( {a - 3} \right)^2} + {\left( {b - 3} \right)^2} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}b - 2 \le b - 4\,\,\left( {VN} \right)\\b - 2 \le - b + 4\end{array} \right.\\{\left( {a - 3} \right)^2} + {\left( {b - 3} \right)^2} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b \le 3\\{\left( {a - 3} \right)^2} + {\left( {b - 3} \right)^2} = 1\end{array} \right..\)

Từ\({\left( {a - 3} \right)^2} + {\left( {b - 3} \right)^2} = 1 \Rightarrow {\left( {a - 3} \right)^2} \le 1 \Rightarrow 2 \le a \le 4 \Rightarrow 0 \le a - 2 \le 2.\)

Do đó \(P = \left| {z - 2} \right| = \sqrt {{{\left( {a - 2} \right)}^2} + {b^2}}  \le \sqrt {{2^2} + {3^2}}  = \sqrt {13} .\)

Đẳng thức xảy ra khi và chỉ khi

\(\left\{ \begin{array}{l}{\left( {a - 2} \right)^2} = {2^2}\\b = 3\\{\left( {a - 3} \right)^2} + {\left( {b - 3} \right)^2} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 3\end{array} \right..\)

Đáp án cần chọn là: c

Toán Lớp 12