Cho các số phức $w,\,\,z$ thỏa mãn \(\left| {w + i} \right| = \dfrac{{3\sqrt 5 }}{5}\) và \(5w = (2 + i)(z - 4).\) Giá trị lớn nhất của biểu thức \(P = \left| {z - 1 - 2i} \right| + \left| {z - 5 - 2i} \right|\) bằng
Phương pháp giải
Gọi tọa độ, biểu diễn các số phức trong hình học phẳng, đưa về biện luận khoảng cách giữa các điểm
Lời giải của Tự Học 365
Ta có $5w = \left( {2 + i} \right)\left( {z - 4} \right) \Leftrightarrow 5w + 5i = \left( {2 + i} \right)z - 8 + i \Leftrightarrow 5\left| {w + i} \right| = \left| {\left( {2 + i} \right)z - 8 + i} \right|$
$ \Leftrightarrow \left| {\left( {2 + i} \right)z - 8 + i} \right| = 3\sqrt 5 \Leftrightarrow \left| {2 + i} \right|.\left| {z - \dfrac{{8 - i}}{{2 + i}}} \right| = 3\sqrt 5 \Leftrightarrow \left| {z - \dfrac{{8 - i}}{{2 + i}}} \right| = 3 \Leftrightarrow \left| {z - 3 + 2i} \right| = 3$
$ \Rightarrow $Tập hợp điểm $M\left( z \right)$ là đường tròn $\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 9,$ tâm $I\left( {3; - \,2} \right),\,\,R = 3.$
Gọi $A\left( {1;2} \right),\,\,B\left( {5;2} \right)$ và $E\left( {3;2} \right)$ là trung điểm của $AB$ suy ra $P = MA + MB$.
Lại có ${\left( {MA + MB} \right)^2} \le 2\left( {M{A^2} + M{B^2}} \right) = 4.M{E^2} + A{B^2}$$ \Rightarrow \,\,P$ lớn nhất $ \Leftrightarrow $$ME$ lớn nhất.
Mà $IE = 4 > R = 3$ Vậy ${P_{\max }} = \sqrt {4.M{E^2} + A{B^2}} = 2\sqrt {53} .$
Đáp án cần chọn là: c
Toán Lớp 12