Câu 37205 - Tự Học 365
Câu hỏi Vận dụng cao

Số nghiệm của phương trình $\sqrt {x + 8 - 2\sqrt {x + 7} }  = 2 - \sqrt {x + 1 - \sqrt {x + 7} } $ là


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Biến đổi phương trình đã cho về dạng tích và giải phương trình, chú ý điều kiện của \(x\) để các biểu thức xác định.

Xem lời giải

Lời giải của Tự Học 365

$\sqrt {x + 8 - 2\sqrt {x + 7} }  = 2 - \sqrt {x + 1 - \sqrt {x + 7} } $$ \Leftrightarrow \left\{ \begin{array}{l}\left| {\sqrt {x + 7}  - 1} \right| = 2 - \sqrt {\left( {\sqrt {x + 7}  - 3} \right)\left( {\sqrt {x + 7}  + 2} \right)} \\\sqrt {x + 7}  \ge 3\end{array} \right.$

$ \Leftrightarrow \left\{ \begin{array}{l}\sqrt {x + 7}  - 3 + \sqrt {\left( {\sqrt {x + 7}  - 3} \right)\left( {\sqrt {x + 7}  + 2} \right)}  = 0\\x \ge 2\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}\sqrt {\sqrt {x + 7}  - 3} \left( {\sqrt {\sqrt {x + 7}  - 3}  + \sqrt {\sqrt {x + 7}  + 2} } \right) = 0\\x \ge 2\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}\sqrt {x + 7}  - 3 = 0\\x \ge 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\x \ge 2\end{array} \right. \Leftrightarrow x = 2$.

Đáp án cần chọn là: d

Toán Lớp 12