Câu 37217 - Tự Học 365
Câu hỏi Vận dụng cao

Hệ sau có nghiệm duy nhất \(\left\{ \begin{array}{l}mx \le m - 3\\\left( {m + 3} \right)x \ge m - 9\end{array} \right.\) khi và chỉ khi


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Hệ có nghiệm duy nhất nếu tập nghiệm của bất phương trình trên và bất phương trình dưới chỉ có duy nhất \(1\) điểm chung.

Xem lời giải

Lời giải của Tự Học 365

Nhận thấy với \(m = 0\) hệ vô nghiệm

\(m =  - 3\) giải hệ ta được nghiệm \(x \ge 2\)

Với \(m \in \left( { - \infty ; - 3} \right)\) hệ đã cho \( \Leftrightarrow \left\{ \begin{array}{l}x \ge \dfrac{{m - 3}}{m}\\x \le \dfrac{{m - 9}}{{m + 3}}\end{array} \right.\)

Hệ có nghiệm duy nhất khi \(\dfrac{{m - 3}}{m} = \dfrac{{m - 9}}{{m + 3}} \Leftrightarrow m = 1 otin \left( { - \infty ;{\mkern 1mu}  - 3} \right)\)

Với \(m \in \left( { - 3;{\mkern 1mu} 0} \right)\) hệ phương trình \( \Leftrightarrow \left\{ \begin{array}{l}x \ge \dfrac{{m - 3}}{m}\\x \ge \dfrac{{m - 9}}{{m + 3}}\end{array} \right.\) suy ra không có \(m \in \left( { - 3;0} \right)\) để hệ có nghiệm duy nhất.

Với \(m \in \left( {0; + \infty } \right)\) hệ đã cho \( \Leftrightarrow \left\{ \begin{array}{l}x \le \dfrac{{m - 3}}{m}\\x \ge \dfrac{{m - 9}}{{m + 3}}\end{array} \right.\)

Hệ có nghiệm duy nhất khi \(\dfrac{{m - 3}}{m} = \dfrac{{m - 9}}{{m + 3}} \Leftrightarrow m = 1 \in \left( {0; + \infty } \right)\)

Vậy hệ có nghiệm duy nhất khi \(m = 1\).

Đáp án cần chọn là: d

Toán Lớp 12