Tìm \(m\) để phương trình \({x^2} - mx + {m^2} - 3 = 0\) có hai nghiệm \({x_1}\), \({x_2}\) là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng \(2\) là
Phương pháp giải
Đưa điều kiện hình học bài cho về điều kiện đại số và áp dụng định lý Vi – et cho phương trình bậc hai thay vào điều kiện đó tìm \(m\)
Lời giải của Tự Học 365
Phương trình \({x^2} - mx + {m^2} - 3 = 0\) có hai nghiệm \({x_1}\), \({x_2}\) là độ dài các cạnh góc vuông của một tam giác với cạnh huyền có độ bài bằng \(2\) khi và chỉ khi:
\(\left\{ \begin{array}{l}\Delta = {m^2} - 4{m^2} + 12 \ge 0\\S = {x_1} + {x_2} = m > 0\\P = {x_1}.{x_2} > 0\\x_1^2 + x_2^2 = 4\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}3 < {m^2} \le 4\\m > 0\\{\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\sqrt 3 < m \le 2\\{m^2} - 2\left( {{m^2} - 3} \right) = 4\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}\sqrt 3 < m \le 2\\{m^2} = 2\end{array} \right.\) \( \Leftrightarrow m \in \emptyset \)
Đáp án cần chọn là: d
Toán Lớp 12