Câu 37226 - Tự Học 365
Câu hỏi Vận dụng cao

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) trên \(\mathbb{R}\), phương trình \(f'\left( x \right) = 0\) có \(4\) nghiệm thực và đồ thị hàm số \(f'\left( x \right)\) như hình vẽ. Tìm số điểm cực trị của hàm số \(y = f\left( {{x^2}} \right)\).


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

- Tính đạo hàm của hàm số \(y = f\left( {{x^2}} \right)\) và tìm nghiệm.

- Xét dấu và lập bảng biến thiên, từ đó kết luận các điểm cực trị của hàm số.

Xem lời giải

Lời giải của Tự Học 365

Ta có: \(y' = 2x.f'\left( {{x^2}} \right)\)

\(y' = 0\) \( \Leftrightarrow \left[ \begin{array}{l}2x = 0\\{x^2} = 0\\{x^2} = 1\\{x^2} = 2\\{x^2} = 4\end{array} \right.\) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 0}\\{x =  \pm 1}\\{x =  \pm \sqrt 2 }\\{x =  \pm 2}\end{array}} \right.\)

Do \(f'\left( {{x^2}} \right) > 0\)\( \Leftrightarrow \left[ \begin{array}{l}{x^2} > 4\\0 < {x^2} < 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x > 2\\x <  - 2\\ - 1 < x < 1\end{array} \right.\) nên ta có bảng xét dấu dưới đây:

Quan sát bảng xét dấu ta thấy: Qua $5$ điểm $x=2,x=-1,x=0,x=1,x=2$ là $y'$ đổi dấu.

Vậy hàm số có $5$ điểm cực trị.

Đáp án cần chọn là: c

Toán Lớp 12