Tìm tập các hợp điểm \(M\) thỏa mãn \(\overrightarrow {MB} \left( {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right) = 0\) với \(A,{\rm{ }}B,{\rm{ }}C\) là ba đỉnh của tam giác.
Phương pháp giải
Xen điểm rút gọn đẳng thức bài cho, từ đó suy ra quỹ tích
Lời giải của Tự Học 365
Gọi \(G\) là trọng tâm tam giác \(ABC\)\( \Rightarrow \overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \)
Ta có \(\overrightarrow {MB} \left( {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right) = 0\) \( \Leftrightarrow \overrightarrow {MB} .3\overrightarrow {MG} = 0 \Leftrightarrow \overrightarrow {MB} .\overrightarrow {MG} = 0\) \( \Leftrightarrow MB \bot MG\) \(\left( * \right)\)
Biểu thức \(\left( * \right)\) chứng tỏ \(MB \bot MG\) hay \(M\) nhìn đoạn \(BG\) dưới một góc vuông nên tập hợp các điểm \(M\) là đường tròn đường kính \(BG.\)
Đáp án cần chọn là: d
Toán Lớp 12