Tích phân $I = \int_0^{\dfrac{\pi }{2}} {\dfrac{{4{{\sin }^3}x}}{{1 + \cos x}}} dx$ có giá trị bằng
Phương pháp giải
Nhân cả tử và mẫu của biểu thức $\dfrac{{4{{\sin }^3}x}}{{1 + \cos x}}$ với \(1 - \cos x\) rồi sử dụng các công thức biến đổi lượng giác đưa về các hàm số lượng giác cơ bản để tính tích phân.
Lời giải của Tự Học 365
$\dfrac{{4{{\sin }^3}x}}{{1 + \cos x}} = \dfrac{{4{{\sin }^3}x(1 - \cos x)}}{{{{\sin }^2}x}} = 4\sin x - 4\sin x\cos x = 4\sin x - 2\sin 2x$
$ \Rightarrow I = \int_0^{\dfrac{\pi }{2}} {(4\sin x - 2\sin 2x)} dx = 2.$
Đáp án cần chọn là: c
Toán Lớp 12