Tích phân \(\int\limits_0^3 {x(x - 1) dx} \) có giá trị bằng với giá trị của tích phân nào trong các tích phân dưới đây ?
Phương pháp giải
Tính rõ từng phép tính tích phân để tìm ra kết quả đúng (chỉ tính đến khi nhận được kết quả đúng thì dừng lại)
Lời giải của Tự Học 365
Ta có : \(\int\limits_0^3 {x(x - 1)dx} \)\( = \int\limits_0^3 {\left( {{x^2} - x} \right)dx} = \left. {\dfrac{{{x^3}}}{3} - \dfrac{{{x^2}}}{2}} \right|_0^3\) \( = 9 - \dfrac{9}{2} = \dfrac{9}{2}\)
+) $\int\limits_0^{\ln \sqrt {10} } {{e^{2x}}dx} = \left. {\dfrac{{{e^{2x}}}}{2}} \right|_0^{\ln \sqrt {10} } = \dfrac{{{e^{2\ln \sqrt {10} }} - 1}}{2} = \dfrac{9}{2}$,
+) $3\int\limits_0^{3\pi } {\sin xdx} = \left. { - 3\cos x} \right|_0^{3\pi } = 6$,
+) $\int\limits_0^2 {\left( {{x^2} + x - 3} \right)dx} = \left. {\left( {\dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} - 3x} \right)} \right|_0^2 = \dfrac{8}{3} + 2 - 6 = - \dfrac{4}{3}$,
+) $\int\limits_0^\pi {\cos (3x + \pi )dx} = \dfrac{1}{3}\left. {\sin (3x + \pi )} \right|_0^\pi = \dfrac{1}{3}\left( {\sin 4\pi - \sin \pi } \right) = 0$.
Vậy chọn $\int\limits_0^{\ln \sqrt {10} } {{e^{2x}}dx} $
Đáp án cần chọn là: c
Toán Lớp 12