Câu 37213 - Tự Học 365
Câu hỏi Vận dụng

Biết \(\int\limits_{0}^{1}{3{{e}^{\sqrt{3x+1}}}dx}=\frac{a}{5}{{e}^{2}}+\frac{b}{3}e+c\,\,\left( a,b,c\in Q \right)\) . Tính \(P=a+b+C\)


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Đặt \(t=\sqrt{3x+1}\) đưa về tích phân chứa hàm số mũ và hàm số đa thức.

Sử dụng phương pháp tích phân từng phần để tính tích phân.

Xem lời giải

Lời giải của Tự Học 365

Đặt \(t=\sqrt{3x+1}\Leftrightarrow {{t}^{2}}=3x+1\Leftrightarrow 2tdt=3dx\)

Đổi cận \(\left\{ \begin{align}   x=0\Leftrightarrow t=1 \\   x=1\Leftrightarrow t=2 \\ \end{align} \right.\), khi đó ta có:  \(\int\limits_{0}^{1}{3{{e}^{\sqrt{3x+1}}}dx}=\int\limits_{1}^{2}{{{e}^{t}}.2tdt}=2\int\limits_{1}^{2}{t{{e}^{t}}dt}\)

Đặt \(\left\{ \begin{array}{l}u = t\\dv = {e^t}dt\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = dt\\v = {e^t}\end{array} \right. \Rightarrow 2\int\limits_1^2 {t{e^t}dt}  = 2\left( {\left. {t{e^t}} \right|_1^2 - \int\limits_1^2 {{e^t}dt} } \right) = 2\left( {\left. {t{e^t}} \right|_1^2 - \left. {{e^t}} \right|_1^2} \right) = 2\left( {2{e^2} - e - \left( {{e^2} - e} \right)} \right) = 2{e^2}\)

\(\Rightarrow \left\{ \begin{align}  a=10 \\   b=c=0 \\ \end{align} \right.\Rightarrow P=a+b+c=10\)

Đáp án cần chọn là: b

Toán Lớp 12