Câu 37206 - Tự Học 365
Câu hỏi Nhận biết

Cho tích phân $I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} ,$ nếu đặt $\left\{ \begin{array}{l}u = f\left( x \right)\\{\rm{d}}v = g'\left( x \right){\rm{d}}x\end{array} \right.$ thì 


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Sử dụng công thức của tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Xem lời giải

Lời giải của Tự Học 365

Đặt $\left\{ \begin{array}{l}u = f\left( x \right)\\{\rm{d}}v = g'\left( x \right){\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = f'\left( x \right){\rm{d}}x\\v = g\left( x \right)\end{array} \right.,$ khi đó $I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .$

Đáp án cần chọn là: c

Toán Lớp 12