Cho \(\int\limits_0^1 {\dfrac{x}{{{{\left( {x + 2} \right)}^2}}}dx} = a + b\ln 2 + c\ln 3\), với a, b, c là các số hữu tỷ. Giá trị của \(3a + b + c\) bằng :
Phương pháp giải
Sử dụng công thức tính tích phân để tìm ra kết quả như đầu bài từ đó tìm được a, b, c.
Lời giải của Tự Học 365
\(\begin{array}{l}\int\limits_0^1 {\dfrac{{xdx}}{{{{\left( {x + 2} \right)}^2}}} = \int\limits_0^1 {\dfrac{{x + 2}}{{{{\left( {x + 2} \right)}^2}}}dx} - \int\limits_0^1 {\dfrac{2}{{{{\left( {x + 2} \right)}^2}}}dx} } \\= \left. {\left( {\ln \left| {x + 2} \right| + \dfrac{2}{{x + 2}}} \right)} \right|_0^1\\ = \ln 3 + \dfrac{2}{3} - \ln 2 - 1 = \ln 3 - \ln 2 - \dfrac{1}{3}\\ \Rightarrow \left\{ \begin{array}{l}a = - \dfrac{1}{3}\\b = - 1\\c = 1\end{array} \right. \Rightarrow 3a + b + c = 3.\left( { - \dfrac{1}{3}} \right) - 1 + 1 = - 1.\end{array}\)
Đáp án cần chọn là: b
Toán Lớp 12