Câu 37226 - Tự Học 365
Câu hỏi Thông hiểu

Cho hàm số $f\left( x \right)$ liên tục trên khoảng $\left( {a;c} \right),$$a < b < c$ và $\int\limits_a^b {f\left( x \right){\mkern 1mu} {\rm{d}}x}  = 5,{\mkern 1mu} {\mkern 1mu} \int\limits_c^b {f\left( x \right){\mkern 1mu} {\rm{d}}x}  = 1.$ Tính tích phân $I = \int\limits_a^c {f\left( x \right){\mkern 1mu} {\rm{d}}x} .$


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Sử dụng tích chất của tích phân : Với $a < b < c$ ta có : $\int\limits_a^c {f\left( x \right)dx = } \int\limits_a^b {f\left( x \right)dx}  + \int\limits_b^c {f\left( x \right)dx.} $

Xem lời giải

Lời giải của Tự Học 365

Ta có $I = \int\limits_a^c {f\left( x \right){\mkern 1mu} {\rm{d}}x}  = \int\limits_a^b {f\left( x \right){\mkern 1mu} {\rm{d}}x}  + \int\limits_b^c {f\left( x \right){\mkern 1mu} {\rm{d}}x}  = \int\limits_a^b {f\left( x \right){\mkern 1mu} {\rm{d}}x}  - \int\limits_c^b {f\left( x \right){\mkern 1mu} {\rm{d}}x}  = 5 - 1 = 4.$

Đáp án cần chọn là: a

Toán Lớp 12