Câu 37228 - Tự Học 365
Câu hỏi Thông hiểu

GTNN của hàm số \(f\left( x \right) = \int\limits_0^x {3{t^2}dt} \) trên đoạn \(\left[ {2;3} \right]\) là:


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Tìm hàm số \(y = f\left( x \right)\) rồi tìm GTNN của nó trên đoạn \(\left[ {2;3} \right]\).

Xem lời giải

Lời giải của Tự Học 365

Ta có: \(f\left( x \right) = \int\limits_0^x {3{t^2}dt}  = \left. {{t^3}} \right|_0^x = {x^3}\) suy ra \(f\left( x \right) = {x^3}\).

Mà hàm số \(y = {x^3}\) đồng biến trên \(\mathbb{R}\) nên cũng đồng biến trên \(\left[ {2;3} \right]\).

Vậy \(\mathop {\min }\limits_{\left[ {2;3} \right]} f\left( x \right) = f\left( 2 \right) = 8\).

Đáp án cần chọn là: d

Toán Lớp 12