Câu 37217 - Tự Học 365
Câu hỏi Nhận biết

Cho tứ diện đều $ABCD$ cạnh $a = 12,$ gọi $\left( P \right)$ là mặt phẳng qua $B$ và vuông góc với $AD.$ Thiết diện của $\left( P \right)$ và hình chóp có diện tích bằng


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Sử dụng lý thuyết của đường thẳng vuông góc với mặt phẳng và bài toán tìm giao tuyến của hai mặt phẳng đồng thời việc tính toán trong tam giác, cụ thể là tính diện tích

Xem lời giải

Lời giải của Tự Học 365

Gọi $E $ là trung điểm của $AD$ ta có \(BE \bot AD,CE \bot AD \Rightarrow AD \bot \left( {BCE} \right) \Rightarrow \left( P \right) \equiv \left( {BCD} \right)\)

Thiết diện là tam giác $BCE.$

Gọi $F$ là trung điểm của $BC.$

Ta có \(BE = CE = \dfrac{{12\sqrt 3 }}{2} = 6\sqrt 3 ;\) \(EF = \sqrt {B{E^2} - B{F^2}}  = 6\sqrt 2 \)

Diện tích thiết diện là \(S = \dfrac{1}{2}EF.BC = \dfrac{1}{2}.6\sqrt 2 .12 = 36\sqrt 2 \)

Đáp án cần chọn là: a

Toán Lớp 12