Câu 37215 - Tự Học 365
Câu hỏi Nhận biết

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $2a,\,\,\,SA \bot \left( {ABC} \right),\,\,\,SA = \dfrac{{a\sqrt 3 }}{2}.$ Gọi $\left( P \right)$ là mặt phẳng đi qua $A$ và vuông góc với \(BC.\) Thiết diện của hình chóp $S.ABC$ được cắt bởi $\left( P \right)$ có diện tích bằng ? 


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Sử dụng lý thuyết của đường thẳng vuông góc với mặt phẳng và bài toán tìm giao tuyến của hai mặt phẳng đồng thời việc tính toán trong tam giác, cụ thể là tính diện tích

Xem lời giải

Lời giải của Tự Học 365

Gọi $M$ là trung điểm của $BC$ thì $BC \bot AM\,\,\,\,\,\,\,\,\,\left( 1 \right).$

Hiển nhiên \(AM = \dfrac{{2a\sqrt 3 }}{2} = a\sqrt 3 \). 

Mà $SA \bot \left( {ABC} \right) \Rightarrow BC \bot SA\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right).$

Từ \(\left( 1 \right)\,\)và \(\left( 2 \right)\) suy ra \(BC \bot \left( {SAM} \right) \Rightarrow \left( P \right) \equiv \left( {SAM} \right).\)

$ \Rightarrow $ Thiết diện của hình chóp $S.ABC$ được cắt bởi $(P)$ chính là \(\Delta SAM.\)

Và \(\Delta \,SAM\) vuông tại $A$ nên \({S_{\Delta SAM}} = \dfrac{1}{2}SA.AM \) \(= \dfrac{1}{2}.\dfrac{{a\sqrt 3 }}{2}.a\sqrt 3  = \dfrac{{3{a^2}}}{4}.\)

Đáp án cần chọn là: c

Toán Lớp 12