Câu 37223 - Tự Học 365
Câu hỏi Vận dụng

Cho tập \(X = \left\{ {x \in \mathbb{N}\left| {\left( {{x^2} - 4} \right)\left( {x - 1} \right)\left( {2{x^2} - 7x + 3} \right) = 0} \right.} \right\}.\) Tính tổng \(S\) các phần tử của tập \(X.\)


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Giải phương trình tìm nghiệm suy ra tổng các phần tử của \(X\).

Xem lời giải

Lời giải của Tự Học 365

Ta có $\left( {{x^2} - 4} \right)\left( {x - 1} \right)\left( {2{x^2} - 7x + 3} \right) = 0$$ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 4 = 0\\x - 1 = 0\\2{x^2} - 7x + 3 = 0\end{array} \right.\,$$ \Leftrightarrow \left[ \begin{array}{l}x =  - 2 otin \mathbb{N}\\x = 2 \in \mathbb{N}\\x = 1 \in \mathbb{N}\\x = \dfrac{1}{2} otin \mathbb{N}\\x = 3 \in \mathbb{N}\end{array} \right.$

Suy ra \(S = 2 + 1 + 3 = 6.\)

Đáp án cần chọn là: d

Toán Lớp 12