Câu 37228 - Tự Học 365
Câu hỏi Thông hiểu

Cho hai số phức ${z_1} = 1 + 2i$ và ${z_2} = 2 - 3i$. Xác định phần ảo \(a\) của số phức $z = 3{z_1} - 2{z_2}$.


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

- Tìm số phức \(z\), từ đó suy ra phần ảo của \(z\).

Xem lời giải

Lời giải của Tự Học 365

Ta có $z = 3{z_1} - 2{z_2} = 3\left( {1 + 2i} \right) - 2\left( {2 - 3i} \right)$

$ = \left( {3 + 6i} \right) + \left( { - 4 + 6i} \right) = \left( {3 - 4} \right) + \left( {6 + 6} \right)i =  - 1 + 12i.$

Vậy $z = 3{z_1} - 2{z_2}$ có phần ảo bằng $a = 12$.

Đáp án cần chọn là: b

Toán Lớp 12