Cho điểm \(M\left( {1;2;0} \right)\) và mặt phẳng \(\left( P \right):x - 3y + z = 0\). Khoảng cách từ \(M\) đến \(\left( P \right)\) là:
Phương pháp giải
Sử dụng công thức khoảng cách từ một điểm đến mặt phẳng \(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c{z_0} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)
Lời giải của Tự Học 365
Ta có: \(d\left( {M,\left( P \right)} \right) = \dfrac{{\left| {1 - 3.2 + 0} \right|}}{{\sqrt {{1^2} + {3^2} + {1^2}} }} = \dfrac{5}{{\sqrt {11} }} = \dfrac{{5\sqrt {11} }}{{11}}\)
Đáp án cần chọn là: b
Toán Lớp 12