Câu 37207 - Tự Học 365
Câu hỏi Thông hiểu

Tính tổng các nghiệm của phương trình \(2\cos \left( {x - \dfrac{\pi }{3}} \right) = 1\) trên \(\left( { - \pi ;\pi } \right)\).


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

- Giải phương trình \(\cos x = \cos \alpha  \Leftrightarrow x =  \pm \alpha  + k2\pi \).

- Tìm các nghiệm của phương trình thỏa mãn \(\left( { - \pi ;\pi } \right)\) rồi tính tổng.

Xem lời giải

Lời giải của Tự Học 365

Ta có:

\(2\cos \left( {x - \dfrac{\pi }{3}} \right) = 1 \Leftrightarrow \cos \left( {x - \dfrac{\pi }{3}} \right) = \dfrac{1}{2} = \cos \dfrac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}x - \dfrac{\pi }{3} = \dfrac{\pi }{3} + k2\pi \\x - \dfrac{\pi }{3} =  - \dfrac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{2\pi }}{3} + k2\pi \\x = k2\pi \end{array} \right.\left( {k \in Z} \right)\)

Với \( - \pi  < x < \pi \) thì \(\left[ \begin{array}{l} - \pi  < \dfrac{{2\pi }}{3} + k2\pi  < \pi  \Leftrightarrow  - \dfrac{{5\pi }}{3} < k2\pi  < \dfrac{\pi }{3} \Leftrightarrow  - \dfrac{5}{6} < k < \dfrac{1}{6} \Rightarrow k = 0\\ - \pi  < k2\pi  < \pi  \Leftrightarrow  - \dfrac{1}{2} < k < \dfrac{1}{2} \Rightarrow k = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = \dfrac{{2\pi }}{3}\\x = 0\end{array} \right.\)

Vậy tổng các nghiệm của phương trình trong khoảng \(\left( { - \pi ;\pi } \right)\) là \(\dfrac{{2\pi }}{3}\).

Đáp án cần chọn là: a

Toán Lớp 12