Cho phương trình \(m{\ln ^2}\left( {x + 1} \right) - \left( {x + 2 - m} \right)\ln \left( {x + 1} \right) - x - 2 = 0\) \(\left( 1 \right)\). Tập tất cả giá trị của tham số \(m\) để phương trình \(\left( 1 \right)\) có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn \(0 < {x_1} < 2 < 4 < {x_2}\) là khoảng \(\left( {a; + \infty } \right)\). Khi đó, \(a\) thuộc khoảng
Phương pháp giải
Đưa phương trình về dạng tích, giải phương trình tìm nghiệm và tìm điều kiện để bài toán thỏa.
Lời giải của Tự Học 365
\(m{\ln ^2}\left( {x + 1} \right) - \left( {x + 2 - m} \right)\ln \left( {x + 1} \right) - x - 2 = 0\)
Điều kiện: \(x > - 1\)
Ta có:
\(\begin{array}{l}m{\ln ^2}\left( {x + 1} \right) - \left( {x + 2 - m} \right)\ln \left( {x + 1} \right) - x - 2 = 0\\ \Leftrightarrow m{\ln ^2}\left( {x + 1} \right) - \left( {x + 2} \right)\ln \left( {x + 1} \right) + m\ln \left( {x + 1} \right) - \left( {x + 2} \right) = 0\\ \Leftrightarrow m\ln \left( {x + 1} \right)\left[ {\ln \left( {x + 1} \right) + 1} \right] - \left( {x + 2} \right)\left[ {\ln \left( {x + 1} \right) + 1} \right] = 0\\ \Leftrightarrow \left[ {\ln \left( {x + 1} \right) + 1} \right]\left[ {m\ln \left( {x + 1} \right) - x - 2} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l}\ln \left( {x + 1} \right) + 1 = 0\\m\ln \left( {x + 1} \right) - x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x + 1 = {e^{ - 1}}\\m\ln \left( {x + 1} \right) - x - 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = {e^{ - 1}} - 1 < 0\,\,\,\left( L \right)\\m\ln \left( {x + 1} \right) - x - 2 = 0\,\,\,\left( * \right)\end{array} \right.\end{array}\)
Với \(m = 0\) thì phương trình \(\left( * \right)\) có nghiệm \(x = - 2 < - 1\left( L \right)\) nên không thỏa bài toán.
Với \(m e 0\) thì \(\left( * \right) \Leftrightarrow \dfrac{{\ln \left( {1 + x} \right)}}{{x + 2}} = \dfrac{1}{m}\).
Xét \(f\left( x \right) = \dfrac{{\ln \left( {1 + x} \right)}}{{x + 2}}\) có \(f'\left( x \right) = \dfrac{{\dfrac{{x + 2}}{{x + 1}} - \ln \left( {x + 1} \right)}}{{{{\left( {x + 2} \right)}^2}}} = 0 \Leftrightarrow x = {x_0} \in \left( {2;3} \right)\) và \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\ln \left( {1 + x} \right)}}{{x + 2}} = 0\) nên ta có bảng biến thiên trên \(\left( { - 1; + \infty } \right)\) như sau:

Để phương trình có nghiệm \({x_1},{x_2}\) thỏa \(0 < {x_1} < 2 < 4 < {x_2}\) thì \(0 < \dfrac{1}{m} < \dfrac{{\ln 5}}{6} \Leftrightarrow m > \dfrac{6}{{\ln 5}} \approx 3,728\)
Suy ra \(a = \dfrac{6}{{\ln 5}} \in \left( {3,7;3,8} \right)\).
Đáp án cần chọn là: b
Toán Lớp 12