Câu 37209 - Tự Học 365
Câu hỏi Vận dụng

Giải phương trình \({\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\). Ta có nghiệm:


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Biến đổi phương trình về dạng tích và sử dụng phương pháp giải phương trình logarit cơ bản.

Xem lời giải

Lời giải của Tự Học 365

Phương trình đã cho tương đương với:

$\begin{array}{l}{\log _2}({2^x} - 1)[\log _{4}2 + \log _{4}({2^x} - 1)] = 1 \Leftrightarrow {\log _2}\left( {{2^x} - 1} \right)\left[ {\dfrac{1}{2} + \dfrac{1}{2}{{\log }_2}\left( {{2^x} - 1} \right)} \right] = 1\\ \Leftrightarrow {\log _2}\left( {{2^x} - 1} \right)\left[ {1 + {{\log }_2}\left( {{2^x} - 1} \right)} \right] = 2 \Leftrightarrow \log _2^2\left( {{2^x} - 1} \right) + {\log _2}\left( {{2^x} - 1} \right) - 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}{\log _2}\left( {{2^x} - 1} \right) = 1\\{\log _2}\left( {{2^x} - 1} \right) =  - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{2^x} - 1 = 2\\{2^x} - 1 = \dfrac{1}{4}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{2^x} = 3\\{2^x} = \dfrac{5}{4}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {\log _2}3\\x = {\log _2}\dfrac{5}{4}\end{array} \right.\end{array}$

Đáp án cần chọn là: c

Toán Lớp 12