Giải phương trình \({\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\). Ta có nghiệm:
Phương pháp giải
Biến đổi phương trình về dạng tích và sử dụng phương pháp giải phương trình logarit cơ bản.
Lời giải của Tự Học 365
Phương trình đã cho tương đương với:
$\begin{array}{l}{\log _2}({2^x} - 1)[\log _{4}2 + \log _{4}({2^x} - 1)] = 1 \Leftrightarrow {\log _2}\left( {{2^x} - 1} \right)\left[ {\dfrac{1}{2} + \dfrac{1}{2}{{\log }_2}\left( {{2^x} - 1} \right)} \right] = 1\\ \Leftrightarrow {\log _2}\left( {{2^x} - 1} \right)\left[ {1 + {{\log }_2}\left( {{2^x} - 1} \right)} \right] = 2 \Leftrightarrow \log _2^2\left( {{2^x} - 1} \right) + {\log _2}\left( {{2^x} - 1} \right) - 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}{\log _2}\left( {{2^x} - 1} \right) = 1\\{\log _2}\left( {{2^x} - 1} \right) = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{2^x} - 1 = 2\\{2^x} - 1 = \dfrac{1}{4}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{2^x} = 3\\{2^x} = \dfrac{5}{4}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {\log _2}3\\x = {\log _2}\dfrac{5}{4}\end{array} \right.\end{array}$
Đáp án cần chọn là: c
Toán Lớp 12