Với điều kiện nào thì \({x^2} + {y^2} + 2ax + 2by + c = 0,\) biểu diễn phương trình đường tròn.
Phương pháp giải
Biến đổi tương đương\({x^2} + {y^2} + 2ax + 2by + c = 0 \Leftrightarrow {\left( {x + a} \right)^2} + {\left( {y + b} \right)^2} = {a^2} + {b^2} - c\)
Lời giải của Tự Học 365
\({x^2} + {y^2} + 2ax + 2by + c = 0,\) là phương trình đường tròn khi \({R^2} = {a^2} + {b^2} - c\). Điều này có nghĩa là \({a^2} + {b^2} - c > 0\) hay \({a^2} + {b^2} > c\).
Đáp án cần chọn là: d
Toán Lớp 12